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Abstract 

Thc CMU Planetary Rover project is dcvcloping a six-lcggcd 
walking robot capable of autonomously navigating, exploring. and 
acquiring samplcs in rugged, unknown cnvironments. To gain 
cxpcricnce with thc problems involved in walking on ruggcd terrain, 
wc built a full-scalc prototype leg and mounted it on a carriagc that 
rolls along ovcrhcad rails. This papcr describes issues addrcsscd in 
dcvcloping the software system to autonomously walk the leg 
through rugged terrain. In particular, we dcscribe thc insight5 
gained into perceiving and modeling rugged terrain, controlling the 
lcggcd mechanism, interacting with thc ground. choosing safe yet 
cflective footfalls, and pl'anning efficient leg moves through space. 

1 Introduction 

The CMU Planetary Rover project is constructing the Ambler, 
a walking robot designed for planetary exploration [2]. The 
configuration is a six-legged vehicle with orthogonal legs and 
an overlapping gait [l]. These features are designed to 
maximize power usage and to simplify planning and control. 
To meet its mission goals, the Ambler must be able to 
autonomously traverse rugged and often uncertain terrain, 
while maintaining a stable platform for its sensors and 
scientific equipment. 

A single leg of the Ambler was built and suspended from a 
carriage attached to overhead rails. We developed a 
distributed software system that integrated perception, 
planning, and real-time control to autonomously walk the 
mechanism through a variety of obstacle courses [6, 101. The 
rationale was that ideas would be easier to develop using just a 
single leg, and that many of the concepts would transfer to the 
full six-legged walker. 

This paper reports on our initial experiences using the single 
leg of the Ambler. It focuses on the special problems 
encountered in perception, control and planning for rough 
terrain walking. In  particular, we discuss the problems of 
modeling 3D terrain, detecting and controlling forceful 
interaction Qith terrain, and planning steps that lead to a 
balance between efficiency, risk, and progress of the 
mechanism. Readers interested in more details of the single- 
leg walking system should consult 16, IO].  

2 Single-Leg Testbed 

A single leg of the Ambler (based on an early design [2]) was 
built to experiment with mechanism control and system 
integration before committing to the fabrication of a six- 
legged vehicle. The leg (Figure 1) has a working radius of 
approximately 2.5 meters and a vertical range of travel of 
about 1.5 meters. The dimensions were chosen to enable the 
Ambler to meet its design objectives of crossing one meter 
wide ditches and stepping over one meter high obstacles. The 
leg is supported by a carriage mechanism that is mounted on a 
pair of rails. The carriage can roll along the rails, providing 
one degree of translational freedom, and the leg can rotate 
freely under the carriage. The support system is designed to 
be statically and dynamically stable, and to allow the leg to 
walk in a manner sufficiently similar to the Ambler so that 
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ideas generated could be easily transferred to the six-legged 
machine. AMBLER LEG 

Sensors attached to the leg include a potentiometer to measure 
the position and velocity of the carriage along the rails, 
incremental and absolute encoders to measure leg positions, 
and two inclinometers to measure the rotation of the carriage. 
In addition, a six-axis forceftorque sensor is attached to the 
bottom of the leg to measure the forces experienced by the 
mechanism as it moves. 

A scanning laser rangefinder, manufactured by Erim, is fxed 
to the carriage (Figure 1). The scanner can acquire 64 by 256 
pixel range and reflectance images in half a second. It 
digitizes to 8 bits with a range ambiguity interval of 
approximately 20 meters. This provides a range resolution of 
approximately 7.62cm. The measurements cover 80 degrees 
in the horizontal direction (azimuth) and 30 degrees in the 
vertical direction (elevation). 

To provide for a variety of “Mars-like” terrains, we 
constructed an obstacle course below the rails measuring 
approximately 11 by 6 meters (Figure 2). The course is filled 
with over 40 tons of sand. Terrain features are introduced by 
resculpting the surface to form hills and trenches, and by 
placing objects on the sand. We have used Styrofoam 
boulders, traffic cones, and large boxes to test the ability of the 
system to navigate over and around obstacles. 
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Figure 2: A Typical Arrangement of the Obstacle Course : 

3 Rough Terrain Walking 

The single-leg walking system consists of five distrib’qed 
modules (Figure 3) integrated by the centralized Task Control 
Architecture (TCA) [9, 111. The modules communicate with 
one another (and with the TCA central control modules) by 
passing messages through the central control, which routes 
them to the appropriate modules and message handlers. TCA 
is basically a high-level robot operating system that provides 
utilities for building and coordinating mobile robot systems. 
The utilities are meant to bridge the gap between task-level 
planners and real-time control systems. In particular, TCA 
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Figure 3: Modules for the Single-Leg Walking System 

supports 1) distributed processing, 2)  resource management, 3) 
hierarchical task decomposition, 4) temporal synchronization 
of tasks, 5) execution monitoring, and 6) error recovery. 

The Conrroller module (Figure 3) handles all robot motions 
and responds to queries from other modules regarding leg 
position, carriage position and orientation, and force sensor 
readings. The Controller runs under the real-time vxWorkstm 
operating system. The Image Sensing Manager (ISM) 
acquires scanner images from the Erim and determines the 
transformation from scanner to world coordinates. For 
debugging purposes, the ISM can also access images stored on 
disk. The Local Terrain Map (LTM) Manager processes 
scanner images to construct elevation maps of the terrain. The 
Gait Planner plans where to place the foot and how far to 
move the camage in order to advance with minimal risk to the 

Gechanism. The Leg Recovery Planner ( U P )  determines a 
‘ trajectory to the planned footfall location that is energy and 

time efficient and that avoids terrain collisions. 
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To walk the leg down the obstacle course, the user inputs a 
goal location along the rails. The walking system is totally 
autonomous from that point on. A message to plan (and 
execute) the walk is sent to the Gait Planner module. If the 
carriage position is close enough to the user-chosen goal, the 
Gait Planner signals success. Otherwise, it requests from the 
LTM Manager a terrain elevation map and a map that 
evaluates the potential support for the leg at various footfall 
locations. If the carriage position has changed from the last 
time a map request was issued, the LTM Manager requests a 
new scanner image from the ISM. In either case, the 
requested maps are constructed and sent back to the Gait 
Planner. 

The Gait Planner combines constraints imposed by the terrain 
and footfall maps with geometric constraints on the leg’s 
movement, and chooses the location that minimizes a 
weighted sum of the constraints. Based on the chosen footfall 



location, the Gait Planner chooses a body move that 
maximizes forward progress. The Gait Planner then sends the 
chosen footfall and body move to TCA, and then sends itself a 
message to plan the next step. 

TCA forwards the footfall location to the LRP. The LRP uses 
a terrain map obtained from the LTM Manager to plan an 
obstacle-free trajectory. The trajectory is then forwarded 
through TCA to the Controller, which executes the trajectory 
and plants the foot at the desired location. After a successful 
leg move, TCA forwards to the Controller the body move 
generated by the Gait Planner. The Controller exerts enough 
force to compress the terrain, then relaxes to a force sufficient 
to provide traction. The horizontal (shoulder and elbow) 
joints are then actuated to drive the carriage forward. Finally, 
tension built up in the leg as a result of the body move is 
relieved, so that the leg does not slip when it is next lifted. At 
this point, the TCA forwards the message to the Gait Planner 
to plan out the next step. 

Figure 4 presents a time breakdown by module for traversing a 
typical obstacle course. The system takes six steps in 13.5 
minutes while covering about 8 meters (60cm/min). The 
darkly shaded areas of the chart represent times when a 
module is computing; lightly shaded areas are times when a 
module is awaiting a reply from another module. To reduce 
the chart's complexity, the 71 leg and body position queries to 
the Controller are not illustrated. In any event, they have a 
negligible effect on the timings since they are handled in less 
than SOmsec each. 

Figure 4 indicates that about 60% of the time is spcnt by the 
real-time Controller i n  moving the leg and carriage. 
Conversely the ISM, which spends only one half second for 
each of the seven images i t  acquires, is nearly always idle. 
Our measurements also show that the TCA central control 
module accounts for only about 3% of the total operating time. 
While, in theory, routing all messages through a central 
process could be a bottleneck, the evidence indicates that it is 
not a problem for this system. 

We have used the walking system described above to navigate 
the single leg through a number of complex obstacle courses, 
such as illustrated i n  Figure 2. While not perfect (primarily 
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due to sensor and mechanism inaccuracies), the system is 
generally successful at navigating the courses. The remainder 
of this paper describes perception, control and planning issues 
that we addressed in getting the system to walk on rugged 
terrain. 

4 Issues in Perception 

We use a scanning laser rangefinder because of the scanner's 
ability to directly recover the three-dimensional structure of 
the environment. Therefore, terrain maps can be constructed 
more rapidly and reliably than by passive vision techniques, 
such as binocular stereo or motion. In addition, using a laser 
scanner will enable the Ambler to walk at night. Although the 
scanner consumes more power than other imaging techniques, 
we believe its speed and accuracy more than offset this 
disadvantage. 

Our primary terrain representation is an elevation map. An 
elevation map is a rectangular grid of real values, 
corresponding to the height of the terrain at a representative 
point within each grid cell (our current implementation uses 
the mid-point of the cell). Grid cells outside the scanner field 
of view are labeled unknown, and cells occluded by other 
objects are labeled as such, along with the maximum known 
elevation of the cell, given the available information. The 
map also contains an estimate of the uncertainty of the 
elevation value at each grid cell. 

We chose to use elevation maps because I )  they provide a 
representation that is appropriate for a wide variety of tasks, 2) 
they can be constructed at multiple levels of resolution, 3) they 
are simple to manipulate, and 4) they can be accessed in a 
simple way (by a polygon that encloses the region of interest). 
A disadvantage is that our elevation maps record just a single 
value for each grid cell, hence overlapping objects (such as 
trees) cannot be represented. We do not, however, view this 
as a serious problem for navigating on Mars. 

The LTM Manager uses the Locus Method to transform the 
raw range images into elevation and uncertainty maps [7, 51. 
The Locus Method efficiently interpolates range data points to 
compute an evenly spaced grid of elevation points (Figure 5). 
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Figure 4: Timing Chart for a Typical Run 
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Figure 5: Elevation Map of Obstacle Course in Figure 2 

The maps created from the most recent images are then 
merged with the current elevation maps using maximum 
likelihood estimation techniques. The merging operation is 
necessary because maps created from a single image do not, in 
general, have a wide enough field of view to support the 
necessary planning tasks. In planning a leg trajectory, for 
example, the LRP must take into account obstacles below and 
behind the vehicle. Because the scanner looks forward, the 
map constructed from the most recent range image cannot 
possibly cover this area, and so the planner needs a map 
constructed from a number of past images. 

The portions of elevation maps requested by the planners are 
computed on demand, but are cached so that future queries 
that request the same (or overlapping) regions do not have to 
recalculate the values. Along with caching maps, we need a 
means of uncaching as the maps become larger than available 
local memory. The LTM Manager maintains a 20 by 20 meter 
window centered around the vehicle, outside of which grid 
cells are paged out, or clipped. While this method of 
computing on demand and caching is quite efficient, we are 
looking at pre-computing some maps concurrently with the 
planning and execution of walking commands. 

5 Issues in Mechanism Control 

The major issue we addressed in controlling the mechanism 
was the forceful interaction of the leg with the terrain. This 
impacted the leg and body move procedures, and also error 
detection and recovery performed by the real-time control 
system. 

Moving the leg through free space posed few problems. The 
leg is moved through a series of user-supplied way-points, 
which are given in joint space. The Controller calculates the 
amount of time required for the slowest joint to move between 
successive way-points and then scales the speeds of the other 
joints so that all joints arrive at each way-point 
simultaneously. To smooth the motion, the way-points are 
linked with constant velocity segments connected together by 
constant acceleration segments [4]. 

For contacting the terrain, the motion command specifies that 
the last way-point is to be made in transition mode. In 
transition mode, the forcehorque sensor is monitored and the 
motion is stopped if a specified (user-settable) force is 
achieved before the actual way-point is reached. If the way- 
point is reached Fist, a failure message is issued to TCA. 

One problem encountered early in our experiments was the 
tendency of the leg to hit terrain features, even though 
obstacle-free paths were supposedly being followed. This was 
traced to inaccuracies in our kinematic model of the leg: we 
had initially assumed a rigid body, but the length of the leg 
and its method of connection to the rails led to a large amount 
of compliance in the mechanism. We partially solved this 
problem by measuring the deflections in the leg and updating 
the kinematic routines using a simple deflection model fit to 
the data. This improved the accuracy of the leg moves, as 
measured in Cartesian space, from about 20cm down to about 
5cm. 

More troublesome was the body move procedure. Our initial 
implementation commanded the position of the horizontal 
joints to follow a linear trajectory. This procedure proved to 
be very inaccurate due to the compliance of the mechanism, 
friction between the carriage and rails, and compliance of the 
terrain. We often witnessed errors of more than 40cm over a 
(commanded) one meter body move. 

Our remedy was to use a velocity, rather than position, control 
procedure. To move the body, the force on the leg is Fist 
increased to 800 pounds, to compress the underlying terrain. 
The force is then relieved to 500 pounds, which provides 
sufficient tractive force. The shoulder and elbow joints are 
then commanded to achieve given velocities. First, the 
Cartesian velocity of the carriage is computed as a clipped, 
linear function of the error between the present carriage 
position (as read from the potentiometer) and the commanded 
goal position. This velocity is then converted into joint 
velocities using an inverse Jacobian function. The body move 
control loop is operated at a frequency of about 60 Hz, which 
differs sufficiently from the natural frequency of the system so 
that resonance does not occur. 

This velocity-controlled body move procedure is accurate to 
within 5cm. The algorithm was subjected to extensive testing 
to gain confidence in its performance. Over 1000 moves were 
performed with the leg starting at various X, Y locations 
relative to the carriage. The resultant data not only conf i i ed  
the general accuracy of the body move procedure, but also 
provided a “cost map” for the Gait Planner to indicate how 
far the carriage can reliably advance from different footfall 
locations (see Section 6). 

During a body move, the compliance of the mechanism causes 
overshoot of the expected positions of the joints, assuming a 
rigid kinematic description of the leg. This overshoot takes 
the form of stored strain energy which causes the foot to drag 
across the terrain when the leg is next lifted. To prevent this, 
the tension is relieved by adjusting the final joint angles to 
correspond with the expected Cartesian position of the leg. 
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The control system also contains several procedures for 
detecting and reacting to errors. The joint limit sensors and 
the motion control cards are continually monitored for 
possible failures. During the body move control loop, the 
system monitors the forces exerted on the foot. The leg is 
stopped if the force drops off rapidly, indicating that the foot 
may have broken free. As described above, the force sensor is 
also monitored during transition mode to detect when the 
terrain is contacted. 

When errors are detected, the Controller halts any ongoing leg 
motions and informs TCA, which passes the failure message 
on to the appropriate exception handler. In addition, the 
control software permits recovery from hardware errors 
without restarting the entire walking system. Such errors 
include tripping limit switches, amplifier faults, servo errors, 
excessive force readings, and “kill” messages from users. 

6 Issues in Planning 

Planning problems for single-leg walking include deciding 
where to plant the leg, how to move it through space, and how 
far to move the carriage at each step. Our approach utilizes 
constraints imposed by the robot’s design to plan movements 
that are efficient, reliable, and provide a good rate of progress 
for the mechanism. 

The Gait Planner plans footfalls by combining various 
geometric and terrain constraints. For each constraint, a cost 
map is created that indicates the goodness of the constraint 
within each grid cell (Figure 6). The cost maps are combined 
using a weighted sum, and the grid cell with the lowest cost is 
chosen as the footfall location. The Gait Planner then chooses 
a body move that is the minimum of 1) the best possible 
advance from the chosen location, and 2) a user-defined 
threshold (we typically constrain the body advance to 1.5m to 
get a reasonable number of footfalls over the length of our 
testbed). 

1. Leg Limits 

4. Tcrrain Ilcv;iiion 

2 .  Carriage Advance 

5. Terrain Features 

The constraints used by the Gait Planner were derived from 
both analysis and experimental evidence. The geometric 
constraints include 1) the mechanical limits of the leg, 2) how 
far the carriage can travel from a given footfall location, which 
is based on empirical values derived from testing the 
controller’s body move algorithm (Section 3, and 3) the 
visibility of the leg in the scanner field of view, to avoid 
occluding terrain. Terrain constraints include 4) the terrain 
elevation, since the leg cannot reach areas that are too high or 
too low, 5) an evaluation of the flatness of the terrain around 
each grid cell [3], since relatively flat terrain is preferable both 
for stability and for providing traction in moving the body, 
and 6) the closeness of the footfall location to adjacent 
obstacles, in order to compensate for inaccuracies in the 
mechanism control and scanner resolution. 

In combining the cost maps, constraints 1 and 4 above are 
used as binary constraints: if the location is not reachable, it is 
eliminated from consideration, no matter what the other values 
are. The remaining two terrain constraints are given high 
weights relative to the remaining two geomemc constraints. 
This reflects our concern for the safety of the machine over its 
progress. 

Advantages of this constraint-based approach are that 1) the 
planner does not have to commit a priori to which constraint 
is most important, and 2) it is easy to add new constraints as 
relevant ones arc identified [ 121. Although this approach 
evaluates a large number of grid cells, in practice the gait 
planning is fast relative to other computations. 

Once the Gait Planner decides where to put the foot, the LRP 
determines the trrijectory that will get the leg to that position 
without hitting any obstacles. The LRP uses the novel 
Envelope Trajectory Finding Algorithm (ETFA) to find time 
and energy efficient moves through 3D space, while searching 
only a 2D grid. The LRP starts by creating a configuration 
search space for the elbow and shoulder joints [X I .  dividing the 

3. Eririi Visibility 

6. Closeness to Obstacles 

Figure 6: Constraint Cost Maps for Choosing a Good Footfall 
(darker shades indicate better footfall locations) 
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space into a discrete grid approximately 0.1 radian wide. The

LRP fills the grid with obstacles, growing the terrain features

and other legs (for the six-legged case) by the radius of the

foot plus an uncertainty factor.

To search the space, the ETFA needs to estimate the energy

and time needed to travel between grid cells. The energy

consumed is estimated simply as the sum of the energy needed

to move the elbow and shoulder joints to a cell, plus the

energy needed to raise the leg above the terrain elevation at

the cell. While this assumes that the power consumption in

each joint is independent, it is a reasonable approximation

given the slow speeds of our mechanism.
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b. Trajectory Envelopes

c. Final Path

Figure 7: The Envelope Trajectory Finding Algorithm

It is more difficult to estimate the time needed to get to a cell,

as Figure 7a illustrates. If we just add up the times to get to

each individual cell, path X is the quickest way to get to point

A. To get a little further to point B, however, path Z is faster

than X followed by Y, since in path Y the horizontal joints

must stop and wait for the vertical lift, while in path Z, the leg

is lifting while it is moving horizontally.

In essence, we need to keep _ack of all possible paths that the

leg can take in reaching a particular grid cell. This is what the

"envelope" part of the ETFA is about. The algorithm keeps

track of the maximum and minimum heights that the leg can

reach in any particular cell, assuming that the leg lifts/lowers

at full speed while moving horizontally (Figure 7b). Thus, the

leg can reach anywhere within the envelope in the same

amount of time. Only if the terrain is above the top of an

envelope (e.g., point C) does the leg have to stop moving
horizontally and lift.

The ETFA finds the minimum-cost trajectory using A* search

and a weighted sum of the energy and time metrics described

above. At the end of the search, the planner determines an

actual trajectory through the envelope space by choosing
vertical moves that minimize the risk to the machine while

maintaining the optimality of the path found. In particular,
this means performing all purely vertical lifts at the start and

delaying all purely vertical descents until the end of the move

(Figure 7c).

In actual use, the Gait Planner performs very well, typically

choosing safe footfalls that skirt obstacles, while enabling the
carriage to be moved at, or near, its maximum advance. The

LRP typically chooses trajectories that hug the ground when

the terrain is relatively fiat. For obstacle-filled terrain, the

LRP typically chooses to go around, rather than over, large

obstacles, since the vertical joint of the leg is much slower

than the two horizontal joints.

7 Conclusions

To date, the leg has autonomously traversed several hundred

meters through various obstacle courses. The effort has taught

us much about perception, locomotion, and planning for

rugged-terrain walking, lessons that apply to the full six-

legged Ambler.

Perhaps the most important result is that our experience with

the single-leg testbed has led to some significant changes in

the configuration of the Ambler, especially with regard to

compliance. The single leg was too flexible to permit the type

of accurate control needed to negotiate very rugged terrain.

The legs of the new Ambler design are extremely rigid [1].
Our experience.to date with the full Ambler indicates that we

can do leg and body moves to within a centimeter of

commanded positions. In any event, we believe our

experience with the single-leg testbed will enable us to handle

any residual compliance.

As for the software system, the Task Control Architecture has

been ported to the Ambler without any modifications. The

LTM Manager and ISM needed only minor modifications to

handle the new Ambler geometry. The Erim scanner itself,

however, was found to have insufficient resolution and

accuracy for our purposes. While this did not prevent

successful walking, it did limit the roughness of the terrains

that the system could traverse. For the six-legged Ambler we

have procured a scanner, manufactured by Perceptron, that

overcomes most of these problems.

One surprise in the endeavor was the fine balance between

geometric and terrain constraints for gait planning. Much of

our effort in getting the leg to negotiate terrain was in fine-

tuning the weighting function that combined constraints. Our

current methodology is empirical: trying the system on a

variety of terrains and tweaking the weights to reflect the

results of the experiments. To make the process of choosing

weights less ad hoc, we are considering the use of adaptive
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algorithms that autonomously adjust the constraint weights
based on the difference between the planned moves and actual

outcomes. Another problem was that the footfall evaluation

constraints used did not always yield what we subjectively

believed to be the best footfall location. We are currently

investigating a more feature-based approach to provide better

evaluations. In general, gait and footfall planning are areas of

on-going research and will undoubtably consume much of our

effort in getting the Ambler to walk on rugged terrain [13].

We believe, however, that the constraint-based structure of the

Gait Planner will enable us to experiment with various

constraints and weighting schemes without much alteration to

the basic planning algorithm.

Error detection and recovery is an important area that, to date,

has received only modest attention by our group. The real-

time Controller continually monitors its sensors and
electronics to detect anomalies, and halts the mechanism when

they occur. It then passes error information through TCA for

action by higher-level exception handlers. Currently, the

exception handlers halt the system if the error was caused by a

hardware fault (e.g., a bad amplifier), and replan the last step

if the error was caused by a bad footfall (e.g., the foot slips

while doing a body move). Much more work remains,

however, in detecting additional errors (such as colliding with

obstacles while moving through space), automated diagnosis

of errors, and intelligent error recovery.

The major impetus for the single-leg walking program was to

gain experience for six-legged walking. To that extent, the

project was quite successful. We have gained much insight

into perceiving and modeling rugged terrain, controlling the

legged mechanism, interacting with the ground, choosing _afe

yet effective footfalls, and planning efficient leg moves

through space. The task ahead is to apply our experiences and

successes to an autonomous walking system for the full six-

legged Ambler.
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